ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Тестеры оптические FOT-600

Назначение средства измерений

Тестеры оптические FOT-600 (далее – тестеры) предназначены для измерений оптической мощности и затухания в оптических волокнах и оптических компонентах в одномодовых и многомодовых волоконно-оптических линиях передачи.

Описание средства измерений

Тестер оптический FOT-600 представляет собой измеритель оптической мощности и источник оптического излучения, выполненные в малогабаритном пластмассовом корпусе. Возможны модификации тестера только с измерителем мощности (FPM-600) или только с источником излучения (FLS-600). Принцип действия измерителя мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму. Источник оптического излучения основан на полупроводниковых лазерах или светодиодах. Серия 600 представлена следующими моделями: измерители оптической мощности FPM-602, FPM-602X; источники оптического излучения FLS-600-NNN, где NNN — одна из моделей излучателя 12D, 23BL, 234BL, 235BL, 01-VCL; тестеры оптические FOT-602-NNN, FOT-602X-NNN, где NNN — одна из вышеперечисленных моделей излучателя.

Рисунок 1 - Общий вид тестера

Рисунок 2 - Схема корпуса тестера — вид сзади/сбоку 1, 2 — места нанесения защитных наклеек; 3 — место нанесения маркировки (под откидывающейся подставкой); 4 — аккумуляторный отсек.

Программное обеспечение

Тестер функционирует под управлением микроконтроллера, используется встроенное программное обеспечение (ПО). ПО состоит из единого модуля, выполняющего функции определения вносимого ослабления в зависимости от числа шагов микроэлектродвигателя, управляющего положением светофильтра, и отображения на экране прибора информации в удобном для оператора виде.

Идентификационные данные программного обеспечения представлены в таблице 1.

Таблица 1

таолица т				
Наименование	Идентификацион-	Номер версии	Цифровой иденти-	Алгоритм
программного	ное наименование	(идентификаци-	фикатор программ-	вычисления циф-
обеспечения	программного	онный номер)	ного обеспечения	рового идентифи-
	обеспечения	программного	(контрольная сумма	катора программ-
		обеспечения	исполняемого кода)	ного обеспечения
Программа				
микроконтрол-	LE0227	1.3.0.0	1A8A2552	CRC32
лера тестера	LEU227	1.3.0.0	1A0A2332	CRC32
FOT-600				

Метрологически значимая часть ПО размещается в энергонезависимой части памяти микроконтроллера, запись которой осуществляется в процессе производства. Доступ к микроконтроллеру исключён конструкцией аппаратной части тестера. Модификация ПО возможна только в сервисных центрах фирмы-производителя.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики аттенюатора приведены в таблице 2

Таблица 2

Характеристика	Модель измерителя оптической мощности			
1 1	FOT-602, FPM-602	FOT-602X, FPM-602X		
Диапазон длин волн	8001650			
измеряемого излучения, нм	40 предустановленных значений			
Длины волн калибровки, нм	850, 1300, 1310, 1490, 1550, 1625			
Диапазон измерений	−70+10	55 126		
оптической мощности (Р), дБм	<i>−7</i> 0+10	−55…+26		
Пределы допускаемого				
значения основной	(0.4)	(12)		
относительной погрешности	$\left(0,3+\frac{0,4}{A}\right)$	$\left(0,3+\frac{12}{A}\right)$		
измерений средней мощности				
оптического излучения на		0.470.6		
длинах волн калибровки, дБ	где A - численное значение мощности в н B т: A = $10^{0,1P+6}$			
Пределы допускаемого значения основной относительной погрешности измерений относительных уровней оптической мощности, дБ	$\left(0,2+\frac{0,4}{A}\right)$	$\left(0,2+\frac{12}{A}\right)$		
	где А - численное значение	мощности в нВт: $A=10^{0,1P+6}$		
Пределы допускаемого значения основной относительной погрешности измерений средней мощности в рабочем спектральном диапазоне, дБ	$\left(0,5 + \frac{0,4}{A}\right)$	$\left(0,5 + \frac{12}{A}\right)$		
	где A - численное значение мощности в н B т: A = $10^{0,1P+6}$			

Vanavanavanava	Модель излучателя				
Характеристика	12D	23BL	234BL	235BL	01-VCL
Длины волн излучения источника, нм	850±25 1320±30	1310±20 1550±20	1310±20 1550±20 1625±15	1310±20 1490±10 1550±20	845±15
Выходная мощность в непрерывном режиме, дБм, не менее	-18 -18 (62,5/125 мкм)	+1 +1	+1 -3 -5	+1 -4,5 -3	—3 (50/125 мкм)
Нестабильность мощности излучения за 15 минут (после 15 минут прогрева), дБ, не более	0,1	0,1	0,1	0,1	0,2
Режим модулированного излучения с частотами, Гц	270; 1000; 2000				

Габаритные размеры прибора, мм, не более	190×100×62
Масса прибора, кг, не более	0,48

Электропитание тестера осуществляется от фирменного литиевого аккумулятора или от сети переменного тока напряжением 220 \pm 22 В, частотой 50 \pm 0,5 Гц через блок питания/зарядное устройство 9 В/1000 мА.

Условия эксплуатации тестеров:

- температура окружающей среды, °С.....-10 ...+50
- относительная влажность воздуха при +20°C до, %...............................95

Знак утверждения типа

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации методом штемпелевания и в виде наклейки на корпус прибора методом наклеивания.

Комплектность средства измерений

Состав комплекта тестера представлен в таблице 3.

Таблица 3

Наименование	Количество
Тестер оптический FOT-600	1
Литиевый аккумулятор	1
Волоконно-оптический адаптер FOA-XX	1
Блок питания / зарядное устройство	1
Кабель USB	1
Измеритель оптической мощности FPM-600. Источник	
оптического излучения FLS-600. Тестер оптический FOT-600. Руководство	1
по эксплуатации	
Кейс для транспортировки и хранения	1

Поверка

осуществляется по документу: ГОСТ Р 8.720-2010 «ГСИ. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Основные средства поверки:

Рабочий эталон средней мощности оптического излучения в волоконно-оптических системах передачи РЭСМ-ВС (ГР №.32837-06).

Основные метрологические характеристики:

- диапазон измеряемых значений средней мощности оптического излучения: от 10^{-10} до 10^{-2} Вт:
- диапазоны длин волн исследуемого излучения: 800 900 нм, 1250 1350 нм, 1480 1700 нм;
- длины волн источников излучения (калибровки): 850 ± 5 , 1310 ± 10 , 1490 ± 5 , 1550 ± 10 , 1625 ± 5 нм;
- пределы допускаемого значения основной относительной погрешности измерений средней мощности на длинах волн калибровки $\pm 2,5$ %, в рабочем спектральном диапазоне ± 5 %, измерений относительных уровней мощности $\pm 1,2$ %;
 - рабочий диапазон длин волн спектральной установки: от 600 до 1700 нм;
- пределы допускаемого значения основной относительной погрешности измерений относительной спектральной характеристики опорного приёмника: ± 5 %;
- пределы допускаемого значения основной абсолютной погрешности градуировки монохроматора по шкале длин волн: ± 1 нм.

Сведения о методиках (методах) измерений

«Тестер оптический FOT-600. Руководство по эксплуатации», раздел 4.

Нормативные документы, устанавливающие требования к тестерам оптическим FOT-600

1 ГОСТ 8.585-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконнооптических систем связи и передачи информации».

2 ГОСТ Р 8.720-2010 «ГСИ. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требования.

Изготовитель

Компания «EXFO Inc.», Канада

Адрес: 400 Godin Avenue, Quebec City (Quebec), G1M 2K2 Canada.

Тел/факс: +1 418 683-0211, +1 418 683-2170.

E-mail: info@exfo.com, www.exfo.com.

Заявитель

Закрытое акционерное общество «Концепт Технологии» (ЗАО «Концепт Технологии»), г. Москва.

Адрес: 117574, г. Москва, Одоевского пр., д.3, корп.7, пом. ТАРП.

Тел/факс: (495) 775-31-75. E-mail: <u>info@c-tt.ru</u>, <u>www.c-tt.ru</u>.

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»), аттестат аккредитации государственного центра испытаний (испытательной, измерительной лаборатории) средств измерений $N \ge 30003-08$ от 30.12.2008 г.

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47.

E-mail: vniiofi@vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

M.п. « » 2012 г.