ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Тестеры оптические FOT-300

Назначение средства измерений

Тестеры оптические FOT-300 (далее – тестеры) предназначены для измерений оптической мощности и затухания в оптических волокнах и оптических компонентах в одномодовых и многомодовых волоконно-оптических линиях передачи.

Описание средства измерений

Тестер оптический FOT-300 представляет собой измеритель оптической мощности и источник оптического излучения, выполненные в малогабаритном пластмассовом корпусе. Возможны модификации тестера только с измерителем мощности (FPM-300) или только с источником излучения (FLS-300). Принцип действия измерителя мощности основан на преобразовании фотоприемником оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму. Источник оптического излучения основан на полупроводниковых лазерах или светодиодах. Серия 300 представлена следующими моделями: измерители оптической мощности FPM-302, FPM-302X; источники оптического излучения FLS-300-NNN, где NNN – одна из моделей излучателя 12D, 23BL, 234BL, 235BL, 01-VCL; тестеры оптические FOT-302-NNN, FOT-302X-NNN, где NNN – одна из вышеперечисленных моделей излучателя.

Рисунок 1 - Общий вид тестера

Рисунок 2 - Схема корпуса тестера – вид сзади/сбоку 1, 2 – места нанесения защитных наклеек; 3 – место нанесения маркировки (под откидывающейся подставкой); 4 – аккумуляторный отсек.

Программное обеспечение

Тестер функционирует под управлением микроконтроллера, используется встроенное программное обеспечение (ПО). ПО состоит из единого модуля, выполняющего функции определения вносимого ослабления в зависимости от числа шагов микроэлектродвигателя, управляющего положением светофильтра, и отображения на экране прибора информации в удобном для оператора виде.

Идентификационные данные программного обеспечения представлены в таблице 1.

٦	Га	6	Ĺ	и	บล	1
	1	A I	ш	ш	114	

Наименование	Идентификацион-	Номер версии	Цифровой иденти-	Алгоритм
программного	ное наименование	(идентификаци-	фикатор программ-	вычисления циф-
обеспечения	программного	онный номер)	ного обеспечения	рового идентифи-
	обеспечения	программного	(контрольная сумма	катора программ-
		обеспечения	исполняемого кода)	ного обеспечения
Программа				
микроконтрол-	LE0212	2.1.1.0	7915C972	CRC32
лера тестера	LEUZIZ	4.1.1.0	19130972	
FOT-300				

Метрологически значимая часть ПО размещается в энергонезависимой части памяти микроконтроллера, запись которой осуществляется в процессе производства. Доступ к микроконтроллеру исключён конструкцией аппаратной части тестера. Модификация ПО возможна только в сервисных центрах фирмы-производителя.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики аттенюатора приведены в таблице 2

Таблица 2

Характеристика	Модель измерителя оптической мощности			
1 1	FOT-302, FPM-302	FOT-302X, FPM-302X		
Диапазон длин волн		.1650		
измеряемого излучения, нм	10 предустановл	енных значений		
Длины волн калибровки, нм	850, 1300, 1310,	1490, 1550, 1625		
Диапазон измерений оптической мощности (Р), дБм	−60…+10	−50+26		
Пределы допускаемого значения основной относительной погрешности измерений средней мощности оптического излучения на длинах волн калибровки, дБ	$\left(0,3+\frac{4}{A}\right)$	$\left(0,3+\frac{40}{A}\right)$		
	где А - численное значение	мощности в нВт: A=10 ^{0,1P+6}		
Пределы допускаемого значения основной относительной погрешности измерений относительных уровней оптической мощности, дБ	$\left(0,2+\frac{4}{A}\right)$	$\left(0,2+\frac{40}{A}\right)$		
	где А - численное значение	мощности в нВт: A=10 ^{0,1P+6}		

Характеристика	Модель измерителя оптической мощности			
	FOT-302, FPM-302	FOT-302X, FPM-302X		
Пределы допускаемого значения основной относительной погрешности измерений средней мощности в рабочем спектральном диапазоне, дБ	$\left(0,5+\frac{4}{A}\right)$	$\left(0,5 + \frac{40}{A}\right)$		
	где A - численное значение мощности в н B т: A = $10^{0,1P+6}$			

Vanagranyaryyya	Модель излучателя				
Характеристика	12D	23BL	234BL	235BL	01-VCL
Длины волн излучения источника, нм	850±25 1320±30	1310±20 1550±20	1310±20 1550±20 1625±15	1310±20 1490±10 1550±20	850±20
Выходная мощность в непрерывном режиме не менее, дБм	-18 -18 (62,5/125 мкм)	+1 +1	+1 -3 -5	+1 -4,5 -3	—3 (50/125 мкм)
Нестабильность мощности излучения за 15 минут (после 15 минут прогрева) не более, дБ	0,1	0,1	0,1	0,1	0,2
Режим модулированного излучения с частотами, Гц	270; 1000; 2000				

Габаритные размеры прибора, мм, не более	185×100×55
Масса прибора, кг, не более	0,4

Электропитание тестера осуществляется от трех батареек типа AA или от сети переменного тока напряжением 220 ± 22 B, частотой 50 ± 0.5 Гц через блок питания 9 B/1000 мA.

Условия эксплуатации тестеров:

- температура окружающей среды, °С.....-10 ...+50
- относительная влажность воздуха при +20 °C, %.................................95

Знак утверждения типа

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации методом штемпелевания и в виде наклейки на корпус прибора методом наклеивания.

Комплектность средства измерений

Состав комплекта тестера представлен в таблице 3.

Таблица 3

Наименование	Количество
Тестер оптический FOT-300	1
Батарея типа АА	3
Волоконно-оптический адаптер FOA-XX	1
Блок питания	1
Измеритель оптической мощности FPM-300. Источник оптического излучения FLS-300. Тестер оптический FOT-300. Руководство по эксплуатации	1

Поверка

осуществляется по документу: ГОСТ Р 8.720-2010 «ГСИ. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Основные средства поверки:

Рабочий эталон средней мощности оптического излучения в волоконно-оптических системах передачи РЭСМ-ВС (Госреестр № 32837-06).

Основные метрологические характеристики:

- диапазон измеряемых значений средней мощности оптического излучения: от 10^{-10} до 10^{-2} Вт;
- диапазоны длин волн исследуемого излучения: 800 900 нм, 1250 1350 нм, 1480 1700 нм;
- длины волн источников излучения (калибровки): 850 ± 5 , 1310 ± 10 , 1490 ± 5 , 1550 ± 10 , 1625 ± 5 нм;
- пределы допускаемого значения основной относительной погрешности измерений средней мощности на длинах волн калибровки $\pm 2,5$ %, в рабочем спектральном диапазоне ± 5 %, измерений относительных уровней мощности $\pm 1,2$ %;
 - рабочий диапазон длин волн спектральной установки: от 600 до 1700 нм;
- пределы допускаемого значения основной относительной погрешности измерений относительной спектральной характеристики опорного приёмника: $\pm 5 \%$;
- пределы допускаемого значения основной абсолютной погрешности градуировки монохроматора по шкале длин волн: ± 1 нм.

Сведения о методиках (методах) измерений

«Тестер оптический FOT-300. Руководство по эксплуатации», раздел 4.

Нормативные и технические документы, устанавливающие требования к тестерам оптическим FOT-300

ГОСТ 8.585-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконнооптических систем связи и передачи информации».

ГОСТ Р 8.720-2010 «ГСИ. Измерители оптической мощности, источники оптического излучения, измерители обратных потерь и тестеры оптические малогабаритные в волоконно-оптических системах передачи. Методика поверки».

Техническая документация компании-изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требования.

Изготовитель

Компания «EXFO Inc.», Канада

Адрес: 400 Godin Avenue, Quebec City (Quebec), G1M 2K2 Canada.

Тел/факс: +1 418 683-0211, +1 418 683-2170.

E-mail: info@exfo.com, www.exfo.com.

Заявитель

Закрытое акционерное общество «Концепт Технологии»,

(ЗАО «Концепт Технологии»), г. Москва.

Адрес: 117574, г. Москва, Одоевского пр., д.3, корп.7, пом. ТАРП.

Тел/факс: (495) 775-31-75. E-mail: info@c-tt.ru, www.c-tt.ru.

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»), аттестат аккредитации государственного центра испытаний (испытательной, измерительной лаборатории) средств измерений $N \ge 30003-08$ от 30.12.2008 г.

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47.

E-mail: vniiofi@vniiofi.ru

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

М.п. « » 2012 г.